A derivative-sigmoidal model reproduces operating point-dependent baroreflex neural arc transfer characteristics.
نویسندگان
چکیده
A cascade model comprised of a derivative filter followed by a nonlinear sigmoidal component reproduces the input size dependence of transfer gain in the baroreflex neural arc from baroreceptor pressure input to efferent sympathetic nerve activity (SNA). We examined whether the same model could predict the operating point dependence of the baroreflex neural arc transfer characteristics estimated by a binary white noise input. In eight anesthetized rabbits, we isolated bilateral carotid sinuses from the systemic circulation and controlled intracarotid sinus pressure (CSP). We estimated the linear transfer function from CSP to SNA while varying mean CSP among 70, 100, 130, and 160 mmHg (P(70), P(100), P(130), and P(160), respectively). The transfer gain at 0.01 Hz was significantly smaller at P(70) (0.61 +/- 0.26) and P(160) (0.60 +/- 0.25) than at P(100) (1.32 +/- 0.42) and P(130) (1.36 +/- 0.45) (in arbitrary units/mmHg; means +/- SD; P < 0.05). In contrast, transfer gain values above 0.5 Hz were similar among the protocols. As a result, the slope of increasing gain between 0.1 and 0.5 Hz was significantly steeper at P(70) (17.6 +/- 3.6) and P(160) (14.1 +/- 4.3) than at P(100) (8.1 +/- 4.4) and P(130) (7.4 +/- 6.6) (in dB/decade; means +/- SD; P < 0.05). These results were consistent with those predicted by the derivative-sigmoidal model, where the deviation of mean input pressure from the center of the sigmoidal nonlinearity reduced the transfer gain mainly in the low-frequency range. The derivative-sigmoidal model functionally reproduces the dynamic SNA regulation by the arterial baroreflex over a wide operating range.
منابع مشابه
Input-size dependence of the baroreflex neural arc transfer characteristics.
Static characteristics of the baroreflex neural arc from pressure input to sympathetic nerve activity (SNA) show sigmoidal nonlinearity, whereas its dynamic characteristics approximate a derivative filter where the magnitude of SNA response becomes greater as the input frequency increases. To reconcile the static nonlinear and dynamic linear components, we examined the effects of input amplitud...
متن کاملHigh-cut characteristics of the baroreflex neural arc preserve baroreflex gain against pulsatile pressure.
A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly...
متن کاملAfferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity
It has been established that vagal nerve stimulation (VNS) benefits patients and/or animals with heart failure. However, the impact of VNS on sympathetic nerve activity (SNA) remains unknown. In this study, we investigated how vagal afferent stimulation (AVNS) impacts baroreflex control of SNA. In 12 anesthetized Sprague-Dawley rats, we controlled the pressure in isolated bilateral carotid sinu...
متن کاملSummation of dynamic transfer characteristics of left and right carotid sinus baroreflexes in rabbits.
Although interactions among parallel negative-feedback baroreflex systems have been extensively investigated with respect to their steady-state responses, the dynamic interactions remain unknown. In anesthetized, vagotomized, and aortic-denervated rabbits, we perturbed isolated intracarotid sinus pressure (CSP) unilaterally or bilaterally around the physiological operating pressure according to...
متن کاملAcute Effects of Vagotomy on Baroreflex Equilibrium Diagram in Rats with Chronic Heart Failure
The arterial baroreflex system can be divided into the neural arc, from pressure input to efferent sympathetic nerve activity (SNA), and the peripheral arc, from SNA to arterial pressure (AP). Plotting the neural and peripheral arcs on a pressure-SNA plane yields a baroreflex equilibrium diagram. We examined the effects of vagotomy on the open-loop static characteristics of the carotid sinus ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 6 شماره
صفحات -
تاریخ انتشار 2004